Serveur d'exploration sur le peuplier

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Evolutionary origin of O-acetyltransferases responsible for glucomannan acetylation in land plants.

Identifieur interne : 000972 ( Main/Exploration ); précédent : 000971; suivant : 000973

Evolutionary origin of O-acetyltransferases responsible for glucomannan acetylation in land plants.

Auteurs : Ruiqin Zhong [États-Unis] ; Dongtao Cui [États-Unis] ; Zheng-Hua Ye [États-Unis]

Source :

RBID : pubmed:31183872

Descripteurs français

English descriptors

Abstract

Mannans are an abundant cell wall polysaccharide in bryophytes, seedless vascular plants and gymnosperms. A previous study has shown that mannan acetylation in Arabidopsis and konjac is mediated by mannan O-acetyltransferases belonging to the Domain of Unknown Function (DUF) 231 family. However, little is known about the acetylation patterns of mannans in bryophytes and seedless vascular plants, and the evolutionary origin of mannan O-acetyltransferases in land plants has not yet been studied. Phylogenetic analysis of the DUF231 family revealed that DUF231 members were present in the charophycean green algae and evolved to form overlapped and divergent phylogenetic groups in different taxa of land plants. Acetyltransferase activity assays of recombinant proteins demonstrated that a number of group II DUF231 members from moss, Selaginella, pine, spruce, rice and poplar were mannan 2-O- and 3-O-acetyltransferases, whereas the two group I DUF231 members from the alga Klebsormidium nitens were not. Structural analysis of mannans from moss and Selaginella showed they were composed of mannosyl and glucosyl residues and the mannosyl residues were acetylated at O-2 and O-3. These findings indicate that although the DUF231 genes originated in algae, their recruitment as mannan O-acetyltransferases probably occurred in bryophytes, and the biochemical functions of these O-acetyltransferases are evolutionarily conserved throughout land plants.

DOI: 10.1111/nph.15988
PubMed: 31183872


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Evolutionary origin of O-acetyltransferases responsible for glucomannan acetylation in land plants.</title>
<author>
<name sortKey="Zhong, Ruiqin" sort="Zhong, Ruiqin" uniqKey="Zhong R" first="Ruiqin" last="Zhong">Ruiqin Zhong</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Plant Biology, University of Georgia, Athens, GA, 30602, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Plant Biology, University of Georgia, Athens, GA, 30602</wicri:regionArea>
<wicri:noRegion>30602</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Cui, Dongtao" sort="Cui, Dongtao" uniqKey="Cui D" first="Dongtao" last="Cui">Dongtao Cui</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Chemistry, University of Georgia, Athens, GA, 30602, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Chemistry, University of Georgia, Athens, GA, 30602</wicri:regionArea>
<wicri:noRegion>30602</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Ye, Zheng Hua" sort="Ye, Zheng Hua" uniqKey="Ye Z" first="Zheng-Hua" last="Ye">Zheng-Hua Ye</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Plant Biology, University of Georgia, Athens, GA, 30602, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Plant Biology, University of Georgia, Athens, GA, 30602</wicri:regionArea>
<wicri:noRegion>30602</wicri:noRegion>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2019">2019</date>
<idno type="RBID">pubmed:31183872</idno>
<idno type="pmid">31183872</idno>
<idno type="doi">10.1111/nph.15988</idno>
<idno type="wicri:Area/Main/Corpus">000848</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000848</idno>
<idno type="wicri:Area/Main/Curation">000848</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000848</idno>
<idno type="wicri:Area/Main/Exploration">000848</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Evolutionary origin of O-acetyltransferases responsible for glucomannan acetylation in land plants.</title>
<author>
<name sortKey="Zhong, Ruiqin" sort="Zhong, Ruiqin" uniqKey="Zhong R" first="Ruiqin" last="Zhong">Ruiqin Zhong</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Plant Biology, University of Georgia, Athens, GA, 30602, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Plant Biology, University of Georgia, Athens, GA, 30602</wicri:regionArea>
<wicri:noRegion>30602</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Cui, Dongtao" sort="Cui, Dongtao" uniqKey="Cui D" first="Dongtao" last="Cui">Dongtao Cui</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Chemistry, University of Georgia, Athens, GA, 30602, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Chemistry, University of Georgia, Athens, GA, 30602</wicri:regionArea>
<wicri:noRegion>30602</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Ye, Zheng Hua" sort="Ye, Zheng Hua" uniqKey="Ye Z" first="Zheng-Hua" last="Ye">Zheng-Hua Ye</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Plant Biology, University of Georgia, Athens, GA, 30602, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Plant Biology, University of Georgia, Athens, GA, 30602</wicri:regionArea>
<wicri:noRegion>30602</wicri:noRegion>
</affiliation>
</author>
</analytic>
<series>
<title level="j">The New phytologist</title>
<idno type="eISSN">1469-8137</idno>
<imprint>
<date when="2019" type="published">2019</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Acetylation (MeSH)</term>
<term>Acetyltransferases (genetics)</term>
<term>Acetyltransferases (metabolism)</term>
<term>Biocatalysis (MeSH)</term>
<term>Embryophyta (enzymology)</term>
<term>Embryophyta (genetics)</term>
<term>Evolution, Molecular (MeSH)</term>
<term>Genes, Plant (MeSH)</term>
<term>HEK293 Cells (MeSH)</term>
<term>Humans (MeSH)</term>
<term>Mannans (metabolism)</term>
<term>Phylogeny (MeSH)</term>
<term>Proton Magnetic Resonance Spectroscopy (MeSH)</term>
<term>Recombinant Proteins (biosynthesis)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Acetyltransferases (génétique)</term>
<term>Acetyltransferases (métabolisme)</term>
<term>Acétylation (MeSH)</term>
<term>Biocatalyse (MeSH)</term>
<term>Cellules HEK293 (MeSH)</term>
<term>Embryophyta (enzymologie)</term>
<term>Embryophyta (génétique)</term>
<term>Gènes de plante (MeSH)</term>
<term>Humains (MeSH)</term>
<term>Mannanes (métabolisme)</term>
<term>Phylogenèse (MeSH)</term>
<term>Protéines recombinantes (biosynthèse)</term>
<term>Spectroscopie par résonance magnétique du proton (MeSH)</term>
<term>Évolution moléculaire (MeSH)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="biosynthesis" xml:lang="en">
<term>Recombinant Proteins</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="genetics" xml:lang="en">
<term>Acetyltransferases</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Acetyltransferases</term>
<term>Mannans</term>
</keywords>
<keywords scheme="MESH" qualifier="biosynthèse" xml:lang="fr">
<term>Protéines recombinantes</term>
</keywords>
<keywords scheme="MESH" qualifier="enzymologie" xml:lang="fr">
<term>Embryophyta</term>
</keywords>
<keywords scheme="MESH" qualifier="enzymology" xml:lang="en">
<term>Embryophyta</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Embryophyta</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>Acetyltransferases</term>
<term>Embryophyta</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Acetyltransferases</term>
<term>Mannanes</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Acetylation</term>
<term>Biocatalysis</term>
<term>Evolution, Molecular</term>
<term>Genes, Plant</term>
<term>HEK293 Cells</term>
<term>Humans</term>
<term>Phylogeny</term>
<term>Proton Magnetic Resonance Spectroscopy</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Acétylation</term>
<term>Biocatalyse</term>
<term>Cellules HEK293</term>
<term>Gènes de plante</term>
<term>Humains</term>
<term>Phylogenèse</term>
<term>Spectroscopie par résonance magnétique du proton</term>
<term>Évolution moléculaire</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Mannans are an abundant cell wall polysaccharide in bryophytes, seedless vascular plants and gymnosperms. A previous study has shown that mannan acetylation in Arabidopsis and konjac is mediated by mannan O-acetyltransferases belonging to the Domain of Unknown Function (DUF) 231 family. However, little is known about the acetylation patterns of mannans in bryophytes and seedless vascular plants, and the evolutionary origin of mannan O-acetyltransferases in land plants has not yet been studied. Phylogenetic analysis of the DUF231 family revealed that DUF231 members were present in the charophycean green algae and evolved to form overlapped and divergent phylogenetic groups in different taxa of land plants. Acetyltransferase activity assays of recombinant proteins demonstrated that a number of group II DUF231 members from moss, Selaginella, pine, spruce, rice and poplar were mannan 2-O- and 3-O-acetyltransferases, whereas the two group I DUF231 members from the alga Klebsormidium nitens were not. Structural analysis of mannans from moss and Selaginella showed they were composed of mannosyl and glucosyl residues and the mannosyl residues were acetylated at O-2 and O-3. These findings indicate that although the DUF231 genes originated in algae, their recruitment as mannan O-acetyltransferases probably occurred in bryophytes, and the biochemical functions of these O-acetyltransferases are evolutionarily conserved throughout land plants.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">31183872</PMID>
<DateCompleted>
<Year>2020</Year>
<Month>05</Month>
<Day>04</Day>
</DateCompleted>
<DateRevised>
<Year>2020</Year>
<Month>09</Month>
<Day>30</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1469-8137</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>224</Volume>
<Issue>1</Issue>
<PubDate>
<Year>2019</Year>
<Month>10</Month>
</PubDate>
</JournalIssue>
<Title>The New phytologist</Title>
<ISOAbbreviation>New Phytol</ISOAbbreviation>
</Journal>
<ArticleTitle>Evolutionary origin of O-acetyltransferases responsible for glucomannan acetylation in land plants.</ArticleTitle>
<Pagination>
<MedlinePgn>466-479</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1111/nph.15988</ELocationID>
<Abstract>
<AbstractText>Mannans are an abundant cell wall polysaccharide in bryophytes, seedless vascular plants and gymnosperms. A previous study has shown that mannan acetylation in Arabidopsis and konjac is mediated by mannan O-acetyltransferases belonging to the Domain of Unknown Function (DUF) 231 family. However, little is known about the acetylation patterns of mannans in bryophytes and seedless vascular plants, and the evolutionary origin of mannan O-acetyltransferases in land plants has not yet been studied. Phylogenetic analysis of the DUF231 family revealed that DUF231 members were present in the charophycean green algae and evolved to form overlapped and divergent phylogenetic groups in different taxa of land plants. Acetyltransferase activity assays of recombinant proteins demonstrated that a number of group II DUF231 members from moss, Selaginella, pine, spruce, rice and poplar were mannan 2-O- and 3-O-acetyltransferases, whereas the two group I DUF231 members from the alga Klebsormidium nitens were not. Structural analysis of mannans from moss and Selaginella showed they were composed of mannosyl and glucosyl residues and the mannosyl residues were acetylated at O-2 and O-3. These findings indicate that although the DUF231 genes originated in algae, their recruitment as mannan O-acetyltransferases probably occurred in bryophytes, and the biochemical functions of these O-acetyltransferases are evolutionarily conserved throughout land plants.</AbstractText>
<CopyrightInformation>© 2019 The Authors. New Phytologist © 2019 New Phytologist Trust.</CopyrightInformation>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Zhong</LastName>
<ForeName>Ruiqin</ForeName>
<Initials>R</Initials>
<AffiliationInfo>
<Affiliation>Department of Plant Biology, University of Georgia, Athens, GA, 30602, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Cui</LastName>
<ForeName>Dongtao</ForeName>
<Initials>D</Initials>
<AffiliationInfo>
<Affiliation>Department of Chemistry, University of Georgia, Athens, GA, 30602, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Ye</LastName>
<ForeName>Zheng-Hua</ForeName>
<Initials>ZH</Initials>
<Identifier Source="ORCID">0000-0001-5714-744X</Identifier>
<AffiliationInfo>
<Affiliation>Department of Plant Biology, University of Georgia, Athens, GA, 30602, USA.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<DataBankList CompleteYN="Y">
<DataBank>
<DataBankName>GENBANK</DataBankName>
<AccessionNumberList>
<AccessionNumber>MK876266</AccessionNumber>
<AccessionNumber>MK876267</AccessionNumber>
<AccessionNumber>MK876268</AccessionNumber>
<AccessionNumber>MK876269</AccessionNumber>
<AccessionNumber>MK876270</AccessionNumber>
<AccessionNumber>MK876271</AccessionNumber>
<AccessionNumber>MK876272</AccessionNumber>
<AccessionNumber>MK876273</AccessionNumber>
<AccessionNumber>MK876274</AccessionNumber>
<AccessionNumber>MK876275</AccessionNumber>
<AccessionNumber>MK876276</AccessionNumber>
<AccessionNumber>MK876277</AccessionNumber>
<AccessionNumber>MK876278</AccessionNumber>
<AccessionNumber>MK876279</AccessionNumber>
<AccessionNumber>MK876280</AccessionNumber>
<AccessionNumber>MK876281</AccessionNumber>
<AccessionNumber>MK876282</AccessionNumber>
<AccessionNumber>MK876283</AccessionNumber>
<AccessionNumber>MK876284</AccessionNumber>
</AccessionNumberList>
</DataBank>
</DataBankList>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013486">Research Support, U.S. Gov't, Non-P.H.S.</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2019</Year>
<Month>07</Month>
<Day>18</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>England</Country>
<MedlineTA>New Phytol</MedlineTA>
<NlmUniqueID>9882884</NlmUniqueID>
<ISSNLinking>0028-646X</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D008351">Mannans</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D011994">Recombinant Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>36W3E5TAMG</RegistryNumber>
<NameOfSubstance UI="C022901">(1-6)-alpha-glucomannan</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 2.3.1.-</RegistryNumber>
<NameOfSubstance UI="D000123">Acetyltransferases</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000107" MajorTopicYN="N">Acetylation</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D000123" MajorTopicYN="N">Acetyltransferases</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D055162" MajorTopicYN="N">Biocatalysis</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D019669" MajorTopicYN="N">Embryophyta</DescriptorName>
<QualifierName UI="Q000201" MajorTopicYN="Y">enzymology</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D019143" MajorTopicYN="Y">Evolution, Molecular</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017343" MajorTopicYN="N">Genes, Plant</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D057809" MajorTopicYN="N">HEK293 Cells</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006801" MajorTopicYN="N">Humans</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008351" MajorTopicYN="N">Mannans</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010802" MajorTopicYN="N">Phylogeny</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D066244" MajorTopicYN="N">Proton Magnetic Resonance Spectroscopy</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D011994" MajorTopicYN="N">Recombinant Proteins</DescriptorName>
<QualifierName UI="Q000096" MajorTopicYN="N">biosynthesis</QualifierName>
</MeshHeading>
</MeshHeadingList>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="Y">Selaginella </Keyword>
<Keyword MajorTopicYN="Y">DUF231</Keyword>
<Keyword MajorTopicYN="Y">acetyltransferase</Keyword>
<Keyword MajorTopicYN="Y">cell wall</Keyword>
<Keyword MajorTopicYN="Y">mannan</Keyword>
<Keyword MajorTopicYN="Y">moss</Keyword>
<Keyword MajorTopicYN="Y">pine</Keyword>
<Keyword MajorTopicYN="Y">spruce</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2019</Year>
<Month>03</Month>
<Day>28</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2019</Year>
<Month>06</Month>
<Day>04</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2019</Year>
<Month>6</Month>
<Day>12</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2020</Year>
<Month>5</Month>
<Day>6</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2019</Year>
<Month>6</Month>
<Day>12</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">31183872</ArticleId>
<ArticleId IdType="doi">10.1111/nph.15988</ArticleId>
</ArticleIdList>
<ReferenceList>
<Title>References</Title>
<Reference>
<Citation>Bischoff V, Nita S, Neumetzler L, Schindelasch D, Urbain A, Eshed R, Persson S, Delmer D, Scheible WR. 2010. TRICHOME BIREFRINGENCE and its homolog AT5G01360 encode plant-specific DUF231 proteins required for cellulose biosynthesis in Arabidopsis. Plant Physiology 153: 590-602.</Citation>
</Reference>
<Reference>
<Citation>Bremner I, Wilkie KCB. 1971. The hemicelluloses of bracken. II. A galactoglucomannan. Carbohydrate Research 20: 193-203.</Citation>
</Reference>
<Reference>
<Citation>Campestrini LH, Silveira JL, Duarte ME, Koop HS, Noseda MD. 2013. NMR and rheological study of Aloe barbadensis partially acetylated glucomannan. Carbohydrate Polymers 94: 511-519.</Citation>
</Reference>
<Reference>
<Citation>Capek P, Alföldi J, Lišková D. 2002. An acetylated galactoglucomannan from Picea abies L. Karst. Carbohydrate Research 337: 1033-1037.</Citation>
</Reference>
<Reference>
<Citation>Capek P, Kubacková M, Alföldi J, Bilisics L, Lisková D, Kákoniová D. 2000. Galactoglucomannan from the secondary cell wall of Picea abies L. Karst. Carbohydrate Research 329: 635-645.</Citation>
</Reference>
<Reference>
<Citation>Del-Bem LE. 2018. Xyloglucan evolution and the terrestrialization of green plants. New Phytologist 219: 1150-1153.</Citation>
</Reference>
<Reference>
<Citation>Dhugga KS, Barreiro R, Whitten B, Stecca K, Hazebroek J, Randhawa GS, Dolan M, Kinney AJ, Tomes D, Nichols S et al. 2004. Guar seed β-mannan synthase is a member of the cellulose synthase super gene family. Science 303: 363-366.</Citation>
</Reference>
<Reference>
<Citation>Dunn EK, Shoue DA, Huang X, Kline RE, MacKay AL, Carpita NC, Taylor IE, Mandoli DF. 2007. Spectroscopic and biochemical analysis of regions of the cell wall of the unicellular ‘mannan weed’, Acetabularia acetabulum. Plant & Cell Physiology 48: 122-133.</Citation>
</Reference>
<Reference>
<Citation>Edwards ME, Dickson CA, Chengappa S, Sidebottom C, Gidley MJ, Reid JSG. 1999. Molecular characterisation of a membrane-bound galactosyltransferase of plant cell wall matrix polysaccharide biosynthesis. The Plant Journal 19: 691-697.</Citation>
</Reference>
<Reference>
<Citation>Estevez JM, Fernández PV, Kasulin L, Dupree P, Ciancia M. 2009. Chemical and in situ characterization of macromolecular components of the cell walls from the green seaweed Codium fragile. Glycobiology 19: 212-228.</Citation>
</Reference>
<Reference>
<Citation>Geddes DS, Wilkie KCB. 1972. A galactoglucomannan from the stem tissues of the aquatic moss Fontinalis antipyretica. Carbohydrate Research 23: 349-357.</Citation>
</Reference>
<Reference>
<Citation>Gille S, Cheng K, Skinner ME, Liepman AH, Wilkerson CG, Pauly M. 2011. Deep sequencing of voodoo lily (Amorphophallus konjac): an approach to identify relevant genes involved in the synthesis of the hemicellulose glucomannan. Planta 234: 515-526.</Citation>
</Reference>
<Reference>
<Citation>Haghighat M, Teng Q, Zhong R, Ye Z-H. 2016. Evolutionary conservation of xylan biosynthetic genes in Selaginella moellendorffii and Physcomitrella patens. Plant & Cell Physiology 57: 1707-1719.</Citation>
</Reference>
<Reference>
<Citation>Hannuksela T, Penhoat CH. 2004. NMR structural determination of dissolved O-acetylated galactoglucomannan isolated from spruce thermomechanical pulp. Carbohydrate Research 339: 301-312.</Citation>
</Reference>
<Reference>
<Citation>Hannuksela T, Tenkanen M, Holmbom B. 2002. Sorption of dissolved galactoglucomannans and galactomannans to bleached kraft pulp. Cellulose 9: 251-261.</Citation>
</Reference>
<Reference>
<Citation>Harholt J, Sørensen I, Fangel J, Roberts A, Willats WG, Scheller HV, Petersen BL, Banks JA, Ulvskov P. 2012. The glycosyltransferase repertoire of the spikemoss Selaginella moellendorffii and a comparative study of its cell wall. PLoS ONE 7: e35846.</Citation>
</Reference>
<Reference>
<Citation>Hazendonk JM, Reinerink EJM, Waard P, Dam JEG. 1996. Structural analysis of acetylated hemicellulose polysaccharides from fibre flax (Linum usitatissimum L.). Carbohydrate Research 291: 141-154.</Citation>
</Reference>
<Reference>
<Citation>Iwata T, Indrarti L, Azuma J-I. 1998. Affinity of hemicellulose for cellulose produced by Acetobacter xylinum. Cellulose 5: 215-228.</Citation>
</Reference>
<Reference>
<Citation>Leroux O, Sørensen I, Marcus SE, Viane RL, Willats WG, Knox JP. 2015. Antibody-based screening of cell wall matrix glycans in ferns reveals taxon, tissue and cell-type specific distribution patterns. BMC Plant Biology 15: 56.</Citation>
</Reference>
<Reference>
<Citation>Liepman AH, Nairn CJ, Willats WG, Sørensen I, Roberts AW, Keegstra K. 2007. Functional genomic analysis supports conservation of function among cellulose synthase-like A gene family members and suggests diverse roles of mannans in plants. Plant Physiology 143: 1881-1893.</Citation>
</Reference>
<Reference>
<Citation>Liepman AH, Wilkerson CG, Keegstra K. 2005. Expression of cellulose synthase-like (Csl) genes in insect cells reveals that CslA family members encode mannan synthases. Proceedings of the National Academy of Sciences, USA 102: 2221-2226.</Citation>
</Reference>
<Reference>
<Citation>Lundqvist J, Teleman A, Junel L, Zacchi G, Dahlman O, Tjerneld F, Stålbrand H. 2002. Isolation and characterization of galactoglucomannan from spruce (Picea abies). Carbohydrate Polymers 48: 29-39.</Citation>
</Reference>
<Reference>
<Citation>Mackie W, Preston RD. 1968. The occurrence of mannan microfibrils in the green algae Codium fragile and Acetabularia crenulata. Planta 79: 249-253.</Citation>
</Reference>
<Reference>
<Citation>Marcus SE, Blake AW, Benians TAS, Lee KJD, Poyser C, Donaldson L, Leroux O, Rogowski A, Peterson HL, Boraston A et al. 2010. Restricted access of proteins to mannan polysaccharides in intact plant cell walls. The Plant Journal 64: 191-203.</Citation>
</Reference>
<Reference>
<Citation>Meier H. 1961. Isolation and characterization of an acetylated glucomannan from pine (Pinus silvestris L.). Acta Chemica Scandinavica 15: 1381-1385.</Citation>
</Reference>
<Reference>
<Citation>Melton LD, Smith BG, Ibrahim R, Schröder R. 2009. Mannans in primary and secondary plant cell walls. New Zealand Journal of Forestry Science 39: 153-160.</Citation>
</Reference>
<Reference>
<Citation>Mikkelsen MD, Harholt J, Ulvskov P, Johansen IE, Fangel JU, Doblin MS, Bacic A, Willats WG. 2014. Evidence for land plant cell wall biosynthetic mechanisms in charophyte green algae. Annals of Botany 114: 1217-1236.</Citation>
</Reference>
<Reference>
<Citation>Morrison JC, Greve LC, Richmond PA. 1993. Cell wall synthesis during growth and maturation of Nitella internodal cells. Planta 189: 321-328.</Citation>
</Reference>
<Reference>
<Citation>Mukai LS, Craigie JS, Brown RG. 1981. Chemical composition and structure of the cell walls of the conchocelis and thallus phases of Porphyra tenera (Rhodophyceae). Journal of Phycology 17: 192-198.</Citation>
</Reference>
<Reference>
<Citation>Newman RH, Hemmingson JA. 1998. Interactions between locust bean gum and cellulose characterized by 13C n.m.r. spectroscopy. Carbohydrate Polymers 36: 167-172.</Citation>
</Reference>
<Reference>
<Citation>Pauly M, Ramirez V. 2018. New insights into wall polysaccharide O-acetylation. Frontiers in Plant Science 9: 1210.</Citation>
</Reference>
<Reference>
<Citation>Popper ZA, Fry SC. 2003. Primary cell wall composition of bryophytes and charophytes. Annals of Botany 91: 1-12.</Citation>
</Reference>
<Reference>
<Citation>Popper ZA, Fry SC. 2004. Primary cell wall composition of pteridophytes and spermatophytes. New Phytologist 164: 165-174.</Citation>
</Reference>
<Reference>
<Citation>Popper ZA, Tuohy MG. 2010. Beyond the green: understanding the evolutionary puzzle of plant and algal cell walls. Plant Physiology 153: 373-383.</Citation>
</Reference>
<Reference>
<Citation>Schröder R, Nicolas P, Vincent SJ, Fischer M, Reymond S, Redgwell RJ. 2001. Purification and characterisation of a galactoglucomannan from kiwifruit (Actinidia deliciosa). Carbohydrate Research 331: 291-306.</Citation>
</Reference>
<Reference>
<Citation>Silva GB, Ionashiro M, Carrara TB, Crivellari AC, Tiné MAS, Prado J, Carpita NC, Buckeridge MS. 2011. Cell wall polysaccharides from fern leaves: evidence for a mannan-rich Type III cell wall in Adiantum raddianum. Phytochemistry 72: 2352-2360.</Citation>
</Reference>
<Reference>
<Citation>Sørensen I, Pettolino FA, Bacic A, Ralph J, Lu F, O'Neill MA, Fei Z, Rose JK, Domozych DS, Willats WG. 2011. The charophycean green algae provide insights into the early origins of plant cell walls. The Plant Journal 68: 201-211.</Citation>
</Reference>
<Reference>
<Citation>Stranne M, Ren Y, Fimognari L, Birdseye D, Yan J, Bardor M, Mollet JC, Komatsu T, Kikuchi J, Scheller HV et al. 2018. TBL10 is required for O-acetylation of pectic rhamnogalacturonan-I in Arabidopsis thaliana. The Plant Journal 96: 772-785.</Citation>
</Reference>
<Reference>
<Citation>Suzuki S, Li L, Sun Y-H, Chiang VL. 2006. The cellulose synthase gene superfamily and biochemical functions of xylem-specific cellulose synthase-like genes in Populus trichocarpa. Plant Physiology 142: 1233-1245.</Citation>
</Reference>
<Reference>
<Citation>Teleman A, Nordström M, Tenkanen M, Jacobs A, Dahlman O. 2003. Isolation and characterization of O-acetylated glucomannans from aspen and birch wood. Carbohydrate Research 338: 525-534.</Citation>
</Reference>
<Reference>
<Citation>Timell TE. 1967. Recent progress in the chemistry of wood hemicelluloses. Wood Sciences and Technology 1: 45-70.</Citation>
</Reference>
<Reference>
<Citation>Urbanowicz BR, Peña MJ, Moniz HA, Moremen KW, York WS. 2014. Two Arabidopsis proteins synthesize acetylated xylan in vitro. The Plant Journal 80: 197-206.</Citation>
</Reference>
<Reference>
<Citation>Vogel JP, Raab TK, Somerville CR, Somerville SC. 2004. Mutations in PMR5 result in powdery mildew resistance and altered cell wall composition. The Plant Journal 40: 968-978.</Citation>
</Reference>
<Reference>
<Citation>Voiniciuc C, Dama M, Gawenda N, Stritt F, Pauly M. 2019. Mechanistic insights from plant heteromannan synthesis in yeast. Proceedings of the National Academy of Sciences, USA 116: 522-527.</Citation>
</Reference>
<Reference>
<Citation>Voiniciuc C, Schmidt MH, Berger A, Yang B, Ebert B, Scheller HV, North HM, Usadel B, Günl M. 2015. MUCILAGE-RELATED10 produces galactoglucomannan that maintains pectin and cellulose architecture in Arabidopsis seed mucilage. Plant Physiology 169: 403-420.</Citation>
</Reference>
<Reference>
<Citation>Wang Y, Mortimer JC, Davis J, Dupree P, Keegstra K. 2013. Identification of an additional protein involved in mannan biosynthesis. The Plant Journal 73: 105-117.</Citation>
</Reference>
<Reference>
<Citation>Whitney SE, Brigham JE, Darke AH, Reid JS, Gidley MJ. 1998. Structural aspects of the interaction of mannan-based polysaccharides with bacterial cellulose. Carbohydrate Research 307: 299-309.</Citation>
</Reference>
<Reference>
<Citation>Willför S, Sjöholm R, Laine C, Roslund M, Hemming J, Holmbom B. 2003. Characterisation of water-soluble galactoglucomannans from Norway spruce wood and thermomechanical pulp. Carbohydrate Polymers 52: 175-187.</Citation>
</Reference>
<Reference>
<Citation>Willför S, Sundberg A, Hemming J, Holmbom B. 2005a. Polysaccharides in some industrially important softwood species. Wood Science and Technology 39: 245-257.</Citation>
</Reference>
<Reference>
<Citation>Willför S, Sundberg A, Pranovich A, Holmbom B. 2005b. Polysaccharides in some industrially important hardwood species. Wood Science and Technology 39: 601-617.</Citation>
</Reference>
<Reference>
<Citation>Xiong G, Cheng K, Pauly M. 2013. Xylan O-acetylation impacts xylem development and enzymatic recalcitrance as indicated by the Arabidopsis mutant tbl29. Molecular Plant 6: 1373-1375.</Citation>
</Reference>
<Reference>
<Citation>Xu C, Leppänen AS, Eklund P, Holmlund P, Sjöholm R, Sundberg K, Willföra S. 2010. Acetylation and characterization of spruce (Picea abies) galactoglucomannans. Carbohydrate Research 345: 810-816.</Citation>
</Reference>
<Reference>
<Citation>Yu L, Lyczakowski JJ, Pereira CS, Kotake T, Yu X, Li A, Mogelsvang S, Skaf MS, Dupree P. 2018. The patterned structure of galactoglucomannan suggests it may bind to cellulose in seed mucilage. Plant Physiology 178: 1011-1026.</Citation>
</Reference>
<Reference>
<Citation>Yuan Y, Teng Q, Zhong R, Haghighat M, Richardson EA, Ye Z-H. 2016a. Mutations of Arabidopsis TBL32 and TBL33 affect xylan acetylation and secondary wall deposition. PLoS ONE 11: e0146460.</Citation>
</Reference>
<Reference>
<Citation>Yuan Y, Teng Q, Zhong R, Ye Z-H. 2013. The Arabidopsis DUF231 domain-containing protein ESK1 mediates 2-O- and 3-O-acetylation of xylosyl residues in xylan. Plant & Cell Physiology 54: 1186-1199.</Citation>
</Reference>
<Reference>
<Citation>Yuan Y, Teng Q, Zhong R, Ye Z-H. 2016b. Roles of Arabidopsis TBL34 and TBL35 in xylan acetylation and plant growth. Plant Science 243: 120-130.</Citation>
</Reference>
<Reference>
<Citation>Yuan Y, Teng Q, Zhong R, Ye Z-H. 2016c. TBL3 and TBL31, two Arabidopsis DUF231 domain proteins, are required for 3-O-monoacetylation of xylan. Plant & Cell Physiology 57: 35-45.</Citation>
</Reference>
<Reference>
<Citation>Zhong R, Cui D, Dasher RL, Ye Z-H. 2018c. Biochemical characterization of rice xylan Oacetyltransferases. Planta 247: 1489-1498.</Citation>
</Reference>
<Reference>
<Citation>Zhong R, Cui D, Ye Z-H. 2018d. A group of Populus trichocarpa DUF231 proteins exhibit differential Oacetyltransferase activities toward xylan. PLoS One 13: e0194532.</Citation>
</Reference>
<Reference>
<Citation>Zhong R, Cui D, Ye Z-H. 2017a. Regiospecific acetylation of xylan is mediated by a group of DUF231-containing O-acetyltransferases. Plant Cell Physiology 58: 2126-2138.</Citation>
</Reference>
<Reference>
<Citation>Zhong R, Cui D, Ye Z-H. 2018a. Members of the DUF231 family are O-acetyltransferases catalyzing 2-O- and 3-O-acetylation of mannan. Plant Cell Physiology 59: 2339-2349.</Citation>
</Reference>
<Reference>
<Citation>Zhong R, Cui D, Ye Z-H. 2018b. Xyloglucan O-acetyltransferases from Arabidopsis thaliana and Populus trichocarpa catalyze acetylation of fucosylated galactose residues on xyloglucan side chains. Planta 248: 1159-1171.</Citation>
</Reference>
<Reference>
<Citation>Zhong R, Cui D, Ye Z-H. 2019. Secondary cell wall biosynthesis. New Phytologist 221: 1703-1723.</Citation>
</Reference>
<Reference>
<Citation>Zhong R, Peña MJ, Zhou G-K, Nairn CJ, Wood-Jones A, Richardson EA, Morrison WH, Darvill AG, York WS, Ye Z-H. 2005. Arabidopsis Fragile Fiber8, which encodes a putative glucuronyltransferase, is essential for normal secondary wall synthesis. Plant Cell 17: 3390-3408.</Citation>
</Reference>
<Reference>
<Citation>Zhong R, Teng Q, Haghighat M, Yuan Y, Furey ST, Dasher RL, Ye Z-H. 2017b. Cytosol-localized UDP-xylose synthases provide the major source of UDP-xylose for the biosynthesis of xylan and xyloglucan. Plant Cell Physiology 58: 156-174.</Citation>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>États-Unis</li>
</country>
</list>
<tree>
<country name="États-Unis">
<noRegion>
<name sortKey="Zhong, Ruiqin" sort="Zhong, Ruiqin" uniqKey="Zhong R" first="Ruiqin" last="Zhong">Ruiqin Zhong</name>
</noRegion>
<name sortKey="Cui, Dongtao" sort="Cui, Dongtao" uniqKey="Cui D" first="Dongtao" last="Cui">Dongtao Cui</name>
<name sortKey="Ye, Zheng Hua" sort="Ye, Zheng Hua" uniqKey="Ye Z" first="Zheng-Hua" last="Ye">Zheng-Hua Ye</name>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/PoplarV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000972 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000972 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    PoplarV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:31183872
   |texte=   Evolutionary origin of O-acetyltransferases responsible for glucomannan acetylation in land plants.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:31183872" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a PoplarV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 12:07:19 2020. Site generation: Wed Nov 18 12:16:31 2020